An Efficient Hash-Selection-Based Blockchain …

265

24. Huang K, Tso R (2012) A commutative encryption scheme based on ElGamal encryption, pp

156–159

25. Fu J, Qiao S, Huang Y, Si X, Li B, Yuan C (2020) A study on the optimization of blockchain

hashing algorithm based on PRCA. Secur Commun Netw 1–12

26. Pissinou AS, Staier N, Kwan C (2019) Sensor-chain: a lightweight scalable blockchain

framework for Internet of Things

27. Kiayias A, Russell A, David B, Oliynykov R (2017) Ouroboros: a provably secure proof-of-

stake blockchain protocol. In: Annual international cryptology conference. Springer, Cham,

pp 357–388

28. Dorri A, Kanhere S, Jurdak R (2017) Towards an optimized blockchain for IoT

29. Banafa A (2017) IoT and blockchain convergence: benefits and challenges. IEEE Internet of

Things

30. Liu M, Yu FR, Teng Y, Leung VC, Song M (2019) Performance optimization for blockchain-

enabled industrial Internet of Things (IioT) systems: a deep reinforcement learning approach.

IEEE Trans Ind Inform 15(6):3559–70

31. Misra S, Mukherjee A, Roy A, Saurabh N, Rahulamathavan Y, Rajarajan M (2021) Blockchain

at the edge: performance of resource-constrained IoT networks. IEEE Trans Parallel Distrib

Syst 32(1):174–183

32. Stevens M, Bursztein E, Karpman P, Albertini A, Markov Y (2017) The first collision for full

SHA-1. In: Annual international cryptology conference. Springer, Cham, pp 570–596

33. Aumasson JP, Neves S, Wilcox-O’Hearn Z, Winnerlein C (2013) BLAKE2: simpler, smaller,

fast as MD5, vol 7954. Springer, Berlin

34. Thomsen SS (2008) An improved preimage attack on MD2, p 89. IACR Cryptol. ePrint Arch.

35. Leurent G (2008) MD4 is not one-way. In: International workshop on fast software encryption.

Springer, Berlin, pp 412–428

36. Sasaki Y, Aoki K (2009) Finding preimages in full MD5 faster than exhaustive search. In:

Annual international conference on the theory and applications of cryptographic techniques.

Springer, Berlin, pp 134–152

37. Daemen J, Van Assche G (2007) Producing collisions for PANAMA, instantaneously. In:

International workshop on fast software encryption. Springer, Berlin, pp 1–18

38. Aumasson JP, Henzen L, Meier W, Naya-Plasencia M (2013) Quark: a lightweight hash. J

Cryptol 26(2):313–339. (Springer)

39. Wang X, Feng D, Lai X, Yu H (2004) Collisions for hash functions MD4, MD5, HAVAL-128

and RIPEMD, p 199. IACR Cryptol. ePrint Arch.

40. Mendel F, Pramstaller N, Rechberger C, Rijmen V (2006) On the collision resistance of

RIPEMD-160. In: International conference on information security. Springer, Berlin, pp

101–116

41. Manuel S, Peyrin T (2008) Collisions on SHA-0 in one hour. In: International workshop on

fast software encryption. Springer, Berlin, pp 16–35

42. De Canniere C, Rechberger C (2008) Preimages for reduced SHA-0 and SHA-1. In: Annual

international cryptology conference. Springer, Berlin, pp 179–202

43. Song L, Liao G, Guo J (2017) Non-full Sbox, linearization: applications to collision attacks on

round-reduced keccak. In: CRYPTO. Springer, Cham, pp 428–451

44. Aoki K, Guo J, Matusiewicz K, Sasaki Y, Wang L (2009) Preimages for step-reduced SHA-

2. In: International conference on the theory and application of cryptology and information

security. Springer, Berlin, pp 578–597

45. Bogdanov A, Knezevic M, Leander G, Toz D, Varici K, Verbauwhede I (2012) Spongent: The

design space of lightweight cryptographic hashing. IEEE Trans Comput 62(10):2041–2053

46. Brent RP (1976) Fast multiple-precision evaluation of elementary functions. J ACM (JACM)

23(2):242–251

47. Brent RP, Zimmermann P (2010) Modern computer arithmetic, vol 18. Cambridge University

Press